

The Power of Multiomics

Multiomics and spatial multiomics analyses have become critical methods in studying tumor samples. Considering the spatial proximity of cells within a tissue sample alongside differential expression analysis offers a more comprehensive picture of disease development, key driver mutations, and possible therapeutic targets.

.

.

A 2021 publication by Rico et al.

FFPE tissues (both tumor and normal) were analyzed by:

- RNA sequencing for differential gene expression
- whole exome sequencing for SNPs and indels
- immunohistochemistry (IHC) for expression and cellular localization of proteins of interest
- Digital Spatial Profiling (DSP) (NanoString) to view expression patterns in spatial context, i.e. tumor cells and cells proximal that may provide clues to tumorigenesis
- qPCR for confirmation of differential gene expression

Hypothesis

This spatial multiomics study led to a hypothesis for the mechanism driving the development of DGASTs from normal tissue, as well as a potential therapeutic not previously considered for this disease subtype

The Importance of Tissue Controls

- As with any comparative study, utilizing proper control groups is critical
- Since DGASTs are rare tumors, samples in this study were limited, and adjacent normal tissue was not available
- To resolve this issue, normal tissue was obtained from various sources, including normal pancreas and duodenum from BioChain (Newark, California)

Multiomics Analysis

Multiomics Analysis Leads to Tumorigenesis Hypothesis and Identification of Possible Therapeutic in Rare GI Tumor Subtype

www.biochain.com

Multiomics Profiling

- RNA sequencing followed by differential expression analysis was used to identify genes with high expression in DGASTs vs. other GI tumors
- Once target genes were identified, IHC, qPCR and DSP were performed to explore differential expression in BG vs. DGAST tumors
- One particular gene of interest (NKX6.3) was found by IHC and qPCR to be expressed in DGAST cells but not in normal tissue – suggesting it plays a role in tumorigenesis or precursor events in the tissue prior to tumor formation
- FFPE samples were analyzed with DSP to quantify a 40 target panel of neural-related antibodies and tumor morphology
- DSP enables "visualization" of spatial context in samples that is otherwise missed by bulk RNA sequencing
- In this study, DSP helped to identify pathways likely involved in the reprogramming of normal BG cells into DGAST tumors
- This was possible by comparing expression patterns in stromal cells surrounding the tumors with cells of similar tissues to identify unique patterns.